Field theoretical methods in condensed matter

Problem set 6

J. Sirker and N. Sedlmayr

Friday, $18^{\text {th }}$ January

1. Winding Numbers and the Path Integral

- For a particle moving on a ring with Hamiltonian $H=-(1 / 2 I)\left(\partial^{2} / \partial \theta^{2}\right)$, where θ is the angle, show from first principles that the partition function $Z=\operatorname{Tr} e^{-\beta H}$ is given by

$$
Z=\sum_{n=-\infty}^{\infty} e^{-\beta \frac{n^{2}}{2 I}} .
$$

- Now using the Feynman path integral show that the partition function can also be written as

$$
Z=\int_{0}^{2 \pi} \mathrm{~d} \theta \sum_{m=-\infty}^{\infty} \int_{c_{m}} D \theta(\tau) e^{-\frac{I}{2} \int_{0}^{\beta} \mathrm{d} \tau \dot{\theta}^{2}}
$$

The contour c_{m} corresponds to the integral from $\theta(0)=\theta$ to $\theta(\beta)=$ $\theta(0)+2 \pi m$. The partition function therefore separates into contributions with different winding numbers (topological sectors). Discuss why the partition function takes this form!

- By varying the action with respect to θ show that the path integral is minimized by the classical paths $\bar{\theta}(\tau)=\theta+2 \pi m \tau / \beta$. By parameterizing a general path as $\theta(\tau)=\bar{\theta}(\tau)+\eta(\tau)$, where $\eta(\tau)$ is a path with no net winding, show that

$$
Z=Z_{0} \sum_{m=-\infty}^{\infty} e^{-\frac{I}{2} \frac{(2 \pi m)^{2}}{\beta}} .
$$

Z_{0} is the partition function for a free particle with open boundary conditions:

$$
Z_{0}=\int D \eta(\tau) e^{-\frac{I}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(\partial_{\tau} \eta\right)^{2}}
$$

Show that $Z_{0}=\sqrt{I / 2 \pi \beta}$.

- Using Poisson's summation formula

$$
\sum_{m=-\infty}^{\infty} h(m)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} \phi h(\phi) e^{2 \pi i n \phi}
$$

show that

$$
Z_{0} \sum_{m=-\infty}^{\infty} e^{-\frac{I}{2} \frac{(2 \pi m)^{2}}{\beta}}=\sum_{n=-\infty}^{\infty} e^{-\beta \frac{n^{2}}{2 I}}
$$

and thus that the two forms for the partition function are equivalent.

2. Coherent State Functional Integrals

Consider the partition function

$$
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}
$$

for the diagonal bosonic Hamiltonian $H=\sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$, where $N=$ $\sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$ is the number operator.

* Write the coherent state functional integral for the partition function in both continuous and discrete representations (with respect to imaginary time).
* Prove that

$$
\prod_{k=1}^{M} \int \frac{\mathrm{~d} \phi_{k}^{*} \mathrm{~d} \phi_{k}}{\mathcal{N}} e^{-\sum_{j, k=1}^{M} \phi_{j}^{*} S_{j k} \phi_{k}}=\left(\operatorname{Det}\left[S_{j k}\right]\right)^{-1}
$$

where \mathcal{N} is some appropriate normalization. Hint: Diagonalize the matrix S.

* By using the previous result and calculating the resultant determinant find the partition function for this system in the continuum limit $M \rightarrow \infty$. What is the matrix S explicitly?

