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1. Winding Numbers and the Path Integral

— For a particle moving on a ring with Hamiltonian H = —(1/21)(9%/06?),
where 6 is the angle, show from first principles that the partition
function Z = Tre A is given by

— Now using the Feynman path integral show that the partition func-
tion can also be written as
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The contour ¢, corresponds to the integral from 6(0) = 6 to 6(8) =
6(0) +2mm. The partition function therefore separates into contribu-
tions with different winding numbers (topological sectors). Discuss
why the partition function takes this form!

— By varying the action with respect to 6 show that the path integral
is minimized by the classical paths 6(7) = 6 + 2xm7/S. By param-
eterizing a general path as 6(7) = 0(7) + n(7), where 7(7) is a path
with no net winding, show that
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Zj is the partition function for a free particle with open boundary
conditions:



— Using Poisson’s summation formula
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show that
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and thus that the two forms for the partition function are equivalent.

2. Coherent State Functional Integrals
Consider the partition function
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for the diagonal bosonic Hamiltonian H = }_ €qal aq, where N =
3., ala, is the number operator.

* Write the coherent state functional integral for the partition
function in both continuous and discrete representations (with
respect to imaginary time).

* Prove that
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where A is some appropriate normalization. Hint: Diagonalize
the matriz S.

* By using the previous result and calculating the resultant deter-
minant find the partition function for this system in the contin-
uum limit M — co. What is the matrix S explicitly?



