<u>PHYS 7510 Condensed Matter Physics 2:</u> Applications of field theoretical methods in condensed matter

2019

INSTRUCTOR: J. Sirker (Allen 515)

TEXTBOOKS:

There is no required textbook for this course. Course notes will be published online. A lot of the material covered in this course can be found in

A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge 2010.

Towards the end of the course, I also plan to cover some bosonization for one-dimensional quantum models. The relevant text book for this chapter is

T. Giamarchi, Quantum Physics in One Dimension, Oxford 2003.

The tentative outline looks as follows:

- 1. INTRODUCTION:
 - Classical and quantum harmonic oscillator
 - Harmonic chain: continuum limit and quantization
- 2. SECOND QUANTIZATION
 - Brief introduction/reminder
- 3. IMPORTANT MODELS AND GREEN'S FUNCTIONS
 - Interacting electrons, Feynman diagrams
 - Tight-binding models: Bloch and Wannier basis
 - Magnetic models: ϕ^4 theory
 - Time ordered, retarded, advanced Green's functions; linear response
- 4. PATH INTEGRALS
 - Feynman path integral (single particle)
 - Coherent states
 - Generating functional, Wick's theorem, Gaussian integrals
- 5. RENORMALIZATION GROUP
 - ϕ^4 model: scaling analysis, critical exponents
 - Wilson RG of the N-vector model
 - General formulation of the RG
 - Spin coherent states and non-linear sigma model: topological terms and Haldane's conjecture

6. LUTTINGER LIQUIDS

• Bosonization of the spin-1/2 Heisenberg model